
1

Computer Programming I & II*

Career Cluster Information Technology

Course Code 10152

Prerequisite(s) Computer Applications, Introduction to Information Technology Careers (recommended), Computer
Hardware & Software (recommended)

Credit .5-1

Program of Study and
Sequence

Computer Programming or a dual credit equivalent is required for the Programming Pathway and
recommended for the Networking & Hardware Pathway

Student Organization SkillsUSA, Future Business Leaders of America (FBLA), CyberPatriots

Coordinating Work-Based
Learning

Job Shadowing, Tours, Informational Interviews, Internships

Industry Certifications None

Dual Credit or Dual
Enrollment

TBD

Teacher Certification Information Technology Cluster Endorsement; Programming & Software Development Pathway
Endorsement; Engineering & Robotics Pathway Endorsement; K-12 Educational Technology
Endorsement; K-12 Classroom Technology

Resources
Course Description:

Computer Programming I introduces students to the fundamentals of computer programming. Students will learn to design, code,

and test their own programs while applying mathematical concepts. Teachers introduce concepts and problem solving skills through

a programming language such as C, C++, C#, Java, Python, or Visual Basic. Computer Programming II reviews and builds on the

concepts introduced in Computer Programming I and introduces students to more complex data structures. Topics include

sequential files, arrays, and classes.

(*Computer Programming II)

Program of Study Application

Computer Programming is required for the Programming Pathway and recommended for the Networking & Hardware Pathway.

Notes:

All computer programming standards integrate aspects of language arts and mathematics.

 Career Cluster: Information Technology

 Course: Computer Programming

Course Standards

Indicator # CP 1 Identify and use a programming environment.

Webb Level Sub-indicator Integrated Content

1 CP 1.1 Demonstrate knowledge of external and internal computer
hardware.
Examples:

 Describe the functions of basic external computer hardware
devices (monitor, printer, keyboard, mouse, adapters, other
devices)

 Describe the functions of the internal components of computers
(CPU, RAM, ROM, motherboard, graphics card, hard drive, optical
drive)

1 CP 1.2 Demonstrate knowledge of software concepts.
Examples:

 Define the distinction between computer software and hardware

 Identify software categories such as application software, web-
based software, or operating system

 Describe the difference between an interpreted language vs a
compiled language

2 CP 1.3 Demonstrate the ability to compile, debug, and execute
programs.
Examples:

 Demonstrate how to use an editor/integrated development
environment (IDE) to compile and run programs

 Understand the difference between syntax, run-time, and logic
errors

 Demonstrate how to debug programs

Notes:

 Career Cluster: Information Technology

 Course: Computer Programming

Indicator # CP 2 Employ standard conventions for creation and design of a software program.

Webb Level Sub-indicator Integrated Content

2 CP 2.1 Demonstrate the ability to use a standard programming style.
Examples:

 Demonstrate how to use white space properly

 Employ a syntax specific naming convention

 Construct identifiers with meaningful format (e.g.: camelCase,
under_scores, PascalCase, and ALLCAPS)

2 CP 2.2 Recognize software development processes.
Examples:

 Identify specifications and requirements

 Decompose a problem into appropriate components

 Design solutions using algorithms and other problem solving
techniques

1 CP 2.3 Identify the syntactical components of a program.
Examples:

 Identify keywords, identifiers, operators, operands, and literals

 Identify the entry-point of a program

Notes:

 Career Cluster: Information Technology

 Course: Computer Programming

Indicator # CP 3 Properly use language-fundamental commands and operations.

Webb Level Sub-indicator Integrated Content

2 CP 3.1 Demonstrate the ability to use basic elements of a specific
language.
Examples:

 Declare, initialize, and assign values to constants and variables

 Demonstrate the ability to use input and output commands

 Communicate clearly with output values stored in identifiers

 Demonstrate the ability to use strings in programs

2 CP 3.2 Employ basic arithmetic expressions in programs.
Examples:

 Use basic arithmetic operators (modulus, multiplication, division,
addition, subtraction)

 Understand order of operation of expressions

Algebra

3 CP 3.3 Demonstrate the ability to use data types in programs.
Examples:

 Declare and use variables and constants

 Differentiate between data types and their application (Boolean,
integer, floating point, strings)

 Declare and use enumerators as a list of constants

Algebra

2 CP 3.4 Incorporate functions/methods.
Examples:

 Write functions for repeated procedures

 Identify return values

Algebra

Notes:

 Career Cluster: Information Technology

 Course: Computer Programming

Indicator # CP 4 Apply control structures.

Webb Level Sub-indicator Integrated Content

2 CP 4.1 Demonstrate the ability to use relational and logical operators in
programs.
Examples:

 Compare values using relational operators

 Form complex expressions using logical operators

3 CP 4.2 Investigate conditional statements.
Examples:

 Incorporate IF-ELSE structures

 Make multiple-way selections (switch, case)

3 CP 4.3 Implement loops in programs.
Examples:

 Use initial, terminal, and incremental values in loops

 Construct while, do-while, and for loops

 Identify nested and infinite loops

Notes:

 Career Cluster: Information Technology

 Course: Computer Programming

Indicator # CP 5 Explore career opportunities in programming.

Webb Level Sub-indicator Integrated Content

1 CP 5.1 Identify personal interests and abilities related to Computer
Programming/Software Engineering careers.
Examples:

 Identify personal creative talents

 Identify technical/programming talents

Portfolio, SDMyLife

3 CP 5.2 Investigate career opportunities, trends, and requirements
related to computer programming/software engineering careers.
Examples:

 Research job opportunities

 Investigate trends associated with computer
programming/software engineering careers

 Discuss related career pathways

2 CP 5.3 Demonstrate job skills for programming industries.
Examples:

 Attendance and punctuality

 Positive attitude

 Positive work ethic

 Use of proper social skills

 Display ability to work as part of team and take direction from
others

Notes:

 Career Cluster: Information Technology

 Course: Computer Programming

Indicator # CP 6: Integrate arrays.*

Webb Level Sub-indicator Integrated Content

2 CP 6.1 Demonstrate the ability to use arrays in programs.
Examples:

 Declare arrays

 Initialize arrays

 Add and remove items from array

Placement of topic
varies based on
different computer
languages

3 CP 6.2 Demonstrate the ability to use strings in programs.
Examples:

 Compare string identifiers

 Concatenate string identifiers

 Locate substring positions

Notes:

 Career Cluster: Information Technology

 Course: Computer Programming

Indicator # CP 7: Implement object-oriented programming techniques.*

Webb Level Sub-indicator Integrated Content

3 CP 7.1 Demonstrate the ability to use existing classes.
Examples:

 Instantiate objects

 Use object data members

 Incorporate functions

4 CP 7.2 Demonstrate the ability to create user-defined classes.
Examples:

 Create and use data members

 Create a constructor to initialize data members

 Create and use instance functions

4 CP 7.3 Demonstrate proper design principles with classes.
Examples:

 Create classes that are well encapsulated (data members private)

 Properly use modifiers and accessors (getters and setters)

 Apply private and public modifiers according to program design

Notes:

